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I: Introduction and error analysis
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Part I: Deep Learning 
ref. book: Ian GoodFellow,  Y oshua Benjio, Aaron Conrville – Deep Learning (https://www.deeplearningbook.org/)

•Machine Learning Basics, Error Analysis
    - basic models, model performance evaluation 

•Optimization in Deep Learning 
    - DL models, structure from dynamical system point of view, non-convex optimization 

•Deep Generative Modeling and Inference
    - VAE, Normalizing Flow, GAN, Structured latent variables, self-supervised 
        

  

   

   

    



•Part II: Reinforcement Learning 
 ref. Book: 

• Richard S. Sutton, Andrew G. Barto: Refincement Learning:An introduction 

• Dimitri P. Bertsekas, reinforcement learning and optimal control 

•Introduction and comparison with optimal control
- Chapter 1 - 3: Introduction and Markov Decision Process 

•Value Based RL and Policy based RL
- Chapter 4 - 6: Dynamical Programing, Monte Carlo and TD Learning 

- Chapter 9 - 11: On-policy, Off-policy, Actor-Critic 

•Frontiers of RL and Applications   
- Connection between optimal control and RL:

- constrained hidden states

- Multi-Agent Deep Reinforcement Learning 



•Part III: Research directions

  Learning stochastic dynamical systems from data

  Missing data reconstruction and prediction with applications in NLP, CV, math biology ect.

  Learning dynamics：invariant manifolds， bifurcation， chaos

  Understand dynamics of neural networks

  Nonlocal, Anomaly diffusion, numerial algorithms

You are more than welcome to present ! 



I. Machine Learning basics, Error Analysis
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•Machine Learning Basics
 tasks/problems

 models

 algorithms

•Model Evaluation 

•Research: quantifying generalization error in deep learning 
 training data size

 model compacity

 smoothness of Neural Network
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•Machine Learning Basics
 tasks/problems

 models

 algorithms

•Model Evaluation 

•Research: 
    - trade off of large scale learning

    - quantifying generalization error in deep learning 



•Machine Learning Basics: Tasks 

•Classification •Regression

•Clustering •Dimension reduction 



Tasks Models

Classification Logistic Regression, 
SVM, KNN, 

Decision Tree, Random Forest, Adaboost, 
Gradient Boosting, Neural Network

Regression Linear, Polynomial, 

Clustering K-means, Hierachy, Density based, Neural Network

Dimension reduction SVD, PCA, LDA, Neural Network 

•Machine Learning Basics: Models 

ML challenges in real applications (to my understanding)
  Big Data: high dimension, sparsity
  Data Distribution shift over time, Or discrepency btw training vs. predicting;   
  Catestrophic forgeting and model generalization 



•Machine Learning Basics: Model 

Take Supervised Learning for Example: 
 Linear regression

 Logistic regression

 Nueral Network 





Logistic regression

Binary classification: 1-dim case
Solve: a, b = ?

Sigmoid ?



Neural Network
solve: weights w?



Neural Network

f: activation function 



Neural Network

f: activation function 



Neural Network

solve: weights w?



Summary: 
Task
       Data: (X, y)          
       Goal: find y = f*(x)
             
Model
       define objective function:  f(x, w)  where w are unknown 

parameters.

Algorithm 
Define loss function:       L( f(x, w), y )
Optimization:       f*(x)  = argmin[ L( f(x, w), y ) ]W



•Machine Learning Basics: Algorithms 

Assum
e

is convex and has a single minimum;

the Hessian matrix H and the gradient covariance matrix G, both 
measured at the empirical optimum.



•Machine Learning Basics: Algorithms 

 Stochastic Gradient Descent
 Batch training



Recall: 
Task
       Data: (X, y)          
       Goal: find y = f*(x)
             
Model
       define objective function:  f(x, w)  where w are unknown 

parameters.

Algorithm (next class ...)

Define loss function:       L( f(x, w), y )
Optimization:       f*(x)  = argmin[ L( f(x, w), y ) ]W
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•Machine Learning Basics
 tasks/problems

 models

 algorithms

•Model Evaluation 

•Research: 
    - trade off of large scale learning

    - quantifying generalization error in deep learning 



•Model Evaluation 

    - regression: mean squared 

error                     

    - classification: 
             accuracy

             error rate 

             precision 

             Recall 

             F-score

             

                                 



 - classification: 
        accuracy = 
(TP+TN)/(TP+TN+FP+FN)

        error rate = 1- accuracy

        precision = TP/(TP+FP)

        recall = TP/(TP+FN)

 

             

                                 

For unbalanced data, different use cases:
e.g. abnormal detection in finance, caner detection - improve recall 
       search engine - improve precision



    - classification: 
ROC, AUC:



Bias-variance decomposition:

Error: model compacity(algorithm), data size, task difficulty 
                                                      Machine Learning by Zhihua Zhou, ref. Friedman 2001 

 Suppose f(x; D) is the prediction result of x on training dataset D, 
 y is the true label for x and y_d is the label for x in data D, we have training error: 

 



Bias-variance decomposition
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•Machine Learning Basics
 tasks/problems

 models

 algorithms

•Model Evaluation 

•Research: 
    - trade off of large scale learning

    - quantifying generalization error in deep learning 



Research paper: quantifying generalization error in deep 
learning 

Bottou L, etc. The tradeoffs of Large scale learning  (2018 NIPs best)
Jin P, Lu L, etc. Quantifying the generalization error in deep learning in terms of data 
distribution and neural network smoothness. 











large-scale learning systems:
 depends on objective function +  computational properties of the chosen optimization algorithm. 
 SGD and 2SGD results do not depend on the estimation rate α. When the estimation rate is 

poor, there is less need to optimize accurately, leave time to process more examples.
 Stochastic algorithms (SGD, 2SGD) yield the best generalization performance despite showing 

the worst optimization performance on the empirical cost. 
small-scale learning systems: 
 generalization performance is solely determined by the statistical properties of the objective 

function



(approximation error, generalization error, optimization 
error)

 Quantifying the generalization error in deep learning in terms of data distribution and neural 
network smoothness.



Question：
  training data 

  model compacity

  smoothness of Neural Network



(A)                                    data 
density

(B)                                    
                    white area: data 
sparsity 
Data cover complexity:  

(1) unchanged with scaled data points, 
only related to distance between the 
points;
(2) numerator: the smaller, the better;
(3) denominator: the bigger the better, 
indicating data under different labels 
seperated better. 



  training data 

The best accuracy that can be achieved in practice (i.e., optimized by 
stochastic gradient descent) by fully-connected networks is 
approximately linear with respect to the cover complexity of the data 
set.



  model compacity

Define: c-Accuracy (smaller than the true accuracy)

second term: 
numerator: data sparsity 
denominator: smoothness 



  smoothness of Neural Network
The trend of the expected accuracy is consistent with the smoothness of 
the neural network, which provides a new ‘‘early stopping’’ strategy 
by monitoring the smoothness of the neural network.



Some Limitations: 
1. Assuming setup in multi-class classfication with max predicted 
component of the result > 0.5.

2. Assuming smoothness of approximation neural network. 


