Mathematical Foundation of
Machine Learning

l: Introduction and error analysis
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Part |: Deep Learning

ref. book: Ian GoodFellow, Y oshua Benjio, Aaron Conrville — Deep Learning (https.//www.deeplearningbook.org/)
e Machine Learning Basics, Error Analysis
- basic models, model performance evaluation
e Optimization in Deep Learning
- DL models, structure from dynamical system point of view, non-convex optimization

* Deep Generative Modeling and Inference

- VAE, Normalizing Flow, GAN, Structured latent variables, self-supervised



 Part Il: Reinforcement Learning

ref. Book:
* Richard S. Sutton, Andrew G. Barto: Refincement Learning:An introduction

* Dimitri P. Bertsekas, reinforcement learning and optimal control

e Introduction and comparison with optimal control

- Chapter 1 - 3: Introduction and Markov Decision Process

» Value Based RL and Policy based RL

- Chapter 4 - 6: Dynamical Programing, Monte Carlo and TD Learning

- Chapter 9 - 11: On-policy, Off-policy, Actor-Critic

e Frontiers of RL and Applications

- Connection between optimal control and RL:
- constrained hidden states

- Multi-Agent Deep Reinforcement Learning



e Part lll: Research directions

® Learning stochastic dynamical systems from data

® Missing data reconstruction and prediction with applications in NLP, CV, math biology ect.
® |earning dynamics: invariant manifolds, bifurcation, chaos

® Understand dynamics of neural networks

® Nonlocal, Anomaly diffusion, numerial algorithms



l. Machine Learning basics, Error Analysis
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* Machine Learning Basics

® tasks/problems
® models

® algorithms

* Model Evaluation

* Research: quantifying generalization error in deep learning

® training data size
® model compacity

® smoothness of Neural Network
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* Machine Learning Basics

® tasks/problems
® models

® algorithms



* Machine Learning Basics: Tasks
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* Machine Learning Basics: Models

Tasks Models
Classification Logistic Regression, Decision Tree, Random Forest, Adaboost,
SVM, KNN, Gradient Boosting, Neural Network
Regression Linear, Polynomial,
Clustering K-means, Hierachy, Density based, Neural Network
Dimension reduction SVD, PCA, LDA, Neural Network

ML challenges in real applications (to my understanding)

» Big Data: high dimension, sparsity

» Data Distribution shift over time, Or discrepency btw training vs. predicting;
» Catestrophic forgeting and model generalization



* Machine Learning Basics: Model

Take Supervised Learning for Example:
» Linear regression
» Logistic regression

» Nueral Network



Linear Regression

Input: vectors X,,+,X, € R® and labels y,,-:+,y, € R

Output: a vector w € R? and scalar b € R such that X; w + b ~ ;.

1-dim (d = 1) example:

Solution:
y; = 0.15 x; + 5.0




Logistic regression

Binary classification: 1-dim case - .
Logistic Regression
Solve: a, b =7
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Y-Axis
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Neural Network

solve: weights w?
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Neural Network
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Neural Network
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f: activation function

Leaky RelLU
max(0.1z, x)
tanh Maxout )
tanh(z max(w] x + by, w3 x + by)
ReLU / ELU —/
2 x>0
{n(r’ -1} <0 ‘

Slgmoid
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Neural Network

> ao(wix+b;) :w; e R%, a;,b; € R

o Is the activation function,
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Summary:
Task
Data: (X, y)
Goal: find y = *(x)

Model
define objective function: 7(x, w) whrere w are unknown
parameters.
Algorithm
Define loss function: L{Tfx, w), y)

Optimization: f*(x) =ad¥gmin[ L f(x, w), y )]



* Machine Learning Basics: Algorithms

Assum w = £(fw(z),y) is convex and has a single minimum:

the Hessian matrix H and the gradient covariance matrix G, both
measured at the empirical optimum.

2 [ 02 i
H = 8 C(wﬂ) = Eﬂ 8 E(f;wn(zm):y) :
Ow _

¢ = zjg(af(fmn(m)az;)) (Bﬁ(f%(m)}y))r“
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* Machine Learning Basics: Algorithms

» Gradient Descent (GD) iterates

aC 1y~ 0
w(t+1) = ) ~ngow®) = u) -y 3 ot ()W
= Second Order Gradient Descent (2GD) iterates

oC

w(t+1) = w(t) _H_la—w

(W(t)) = 'lﬂ(t) - _H_l Z fw(t mt) yﬁ)

v' Stochastic Gradient Descent
v" Batch training



Recall:
Task
Data: (X, y)
Goal: find y = *(x)

Model
define objective function: 7(x, w) whrere w are unknown

parameters.

Algorithm (next class ...)
Define loss function: L{Tfx, w), y)
Optimization: f*(x) =adfgmin[ L( f(x, w), y) ]
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* Model Evaluation



* Model Evaluation

- regression: mean squared
error

- classification:

accuracy
error rate
precision
Recall

F-score



relevant elements
I 1

false negatives true negatives

- classification: _

accuracy = Positive | Negative
TP+TN)/(TP+TN+FP+FN)
it it Positive TP id
true positives false positives error rate — 1 _ aCCUI'aCy (Type Il )
- FN
- Negat TN
precision = TP/(TP+FP) R (Tyee )

recall = TP/(TP+FN)

F — Score = (1 + [)’2) _ Precision - Recall

f% - Precision + Recall

selected elements

fems are reievant? ftems are selectea? For unbalanced data, different use cases:
e.g. abnormal detection in finance, caner detection - improve recall
e search engine - improve precision
Precision = Recall = ——

|



- classification:
ROC, AUC:

.random chance

true positive rate

.
e -
b

0 0.1 - |
false positive rate

(a)



Bias-variance decomposition:

Error: model compacity(algorithm), data size, task difficulty
Machine Learning by Zhihua Zhou, ref. Friedman 20017

Suppose f(x; D) is the prediction result of x on training datas: f(z) = Ep [f(z: D)]
y is the true label for x and y_d is the label for x in data D, we have training error:

= Ep [{f(x; D) — ya}’]

=Ep [{f(z: D) — f(z) + f(z) — ya}*

=Ep [{f(z; D) — f(2)}*] +Ep [{f(z) — ya}’] + 2Ep [{(f(z; D) — f(2)) - (f(z) — ya)}]
=Ep [{f(z: D) — f(2)}*] +Ep [{f(z) — ya}’]

=Ep [{f(z: D) — f(«)}’] +Ep [{f(2) —y + y — ya}’]

=Ep [{f(z; D) — f(x)}*] +Ep [{f(z) —y}*] +Ep [{y — va}*] + 2Ep [{f(z) — yH{y — ya}]
=Ep [{f(z; D) — f(z)}*] + {f(z) — y}* +Ep [{y — ya}’]

= Variance + Bias + Noise



Bias-variance decomposition

Low Bias

High Bias

Low Variance High Variance

@©

Prediction Error

High Bias Low Bias
Low Variance High Variance
- ————-—-— L aaa o

Test Sample

h

Training Sample

Low High
Model Complexity
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e Research:

- trade off of large scale learning

- quantifying generalization error in deep learning



Research paper: quantifying generalization error in deep
learning

Bottou L, etc. The tradeoffs of Large scale learning (2018 NIPs best)
Jin P, Lu L, etc. Quantifying the generalization error in deep learning in terms of data
distribution and neural network smoothness.
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Algorithm Cost of one Iterations Time to reach Time to reach

iteration to reach p accuracy p E < c(€app +¢)

GD O(nd) O(HJ log i) O (ndh: log %) O(f/z log? é)
2GD O(d? + nd) O(log log %) @((d2 + nd) log log %) O(Ef“fa log % log log %)
o ow el o) e(e)
seo o@)  pee)  o(<) o(%)

& = E[E(f3) — E(f")]+E[E(fn) — E(f3)] + E[E(fn) — E(fa))]
= &app+Eesit Eopts
large—-scale learning systems:
v' depends on objective function + computational properties of the chosen optimization algorithm.
v' SGD and 2SGD results do not depend on the estimation rate a. When the estimation rate is
poor, there is less need to optimize accurately, leave time to process more examples.
v Stochastic algorithms (SGD, 2SGD) yield the best generalization performance despite showing
the worst optimization performance on the empirical cost.
small-scale learning systems:
v generalization performance is solely determined by the statistical properties of the objective
function
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(Learned Model) Empirical Risk

Minimizer

Quantifying the generalization error in deep learning in terms of data distribution and neural

network smoothness.

£ = E[E(f§) — E(f*)| +E[E(fs) — E(f3)] +E[E(fa) — E(fa)]

(approximation error, generalization error, optimization
error)



Question:

® training data
® model compacity

® smoothness of Neural Network
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(A) ho(r) = (D N U B(x;, r)) data
depcitrs 1 5 M

o(T, u) = ﬁfu h-(r)dr.
(B)
Data cover cOmpfesitya: dala
sparsity 1— o

(1) unchanged with scaled data points,
only related to distance between the
points;

(2) numerator: the smaller, the better;
(3) denominator: the bigger the better,
indicating data under different labels
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® training data

The best accuracy that can be achieved in practice (i.e., optimized by
stochastic gradient descent) by fully-connected networks is

approximately linear with respect to the cover complexity of the data

set. 5

L K=1U .r"
1 ® P
G| o Betit .

0.150{ m K=100 e
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® model compacity

Define: c-Accuracy (smaller than the true accuracy)

u(HY)

pc(f) = 14(D)

= u(H.),

where H. = {x € D|f is c-accurate at x}.

f:D=»E . fiuxlx)>c (c>0.5)

(E) 60 & 07

(F) 6r(€)

f(x)

pe(f) > 1- 21— o),

second term:
numerator: data sparsity
denominator: smoothness




® smoothness of Neural Network

The trend of the expected accuracy is consistent with the smoothness of
the neural network, which provides a new ' ‘early stopping’ ' strategy
by monitoring the smoothness of the neural network.
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Fig. 6. Consistency hetween test loss and newral petwork smoothness during the

training of the neural network for MMNIST. The arrows indicate the minimum of
the test loss and the maximum of A



Some Limitations:

1. Assuming setup in multi-class classfication with max predicted
component of the result > 0.5.

2. Assuming smoothness of approximation neural network.



